Impacts of Climate Change and Urbanization on Future Building Performance

Drury B. Crawley, Ph.D.

FASHRAE, BEMP, FIBPSA, AIA Bentley Systems, Inc.

10 February 2020

This ASHRAE Distinguished Lecturer is brought to you by the Society Chapter Technology Transfer Committee

Complete the Distinguished Lecturer Event Summary Critique

CTTC needs your feedback to continue to improve the DL Program

- Distribute the DL Evaluation Form to all attendees
- Collect at the end of the meeting
- Compile the attendee rating on the Event Summary Critique
- Send the completed Event Summary Critique to your CTTC RVC and ASHRAE Headquarters

Forms are available at: <u>www.ashrae.org/distinguishedlecturers</u>

VOLUNTEER! www.ashrae.org/volunteer

BECOME A FUTURE LEADER IN ASHRAE – WRITE THE NEXT CHAPTER IN YOUR CAREER

ASHRAE Members who are active at their chapter and society become leaders and bring information and technology back to their job.

YOU ARE NEEDED FOR:

- Society Technical Committees
- Society Standard Committees
- Chapter Membership Promotion
- Chapter Research Promotion
- Chapter Student Activities
- Chapter Technology Transfer

Find your Place in ASHRAE and volunteer

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Impacts of Climate Change and Urbanization on Future Building Performance Approved for 1 LU/HSW by AIA; course number is CRAWLEY05.

Learning Objectives

- Explain difference between weather and climate
- Recognize climate change scenarios
- Explain impacts of urban heat islands on diurnal temperature
- Explain impact of climate change on energy performance in different climate zones

Weather ≠ Climate

Weather:

the state of the atmosphere with respect to wind, temperature, cloudiness, moisture, pressure, etc.

Climate:

the composite or generally prevailing weather conditions of a region, as temperature, air pressure, humidity, precipitation, sunshine, cloudiness, and winds, throughout the year, averaged over a series of years.

10

Building Performance Simulation for Design and Operation

Released January 2011, 2 nd Edition April 2019	
Endorsed by IBPSA Contents: 1 Building performance simulation - challenges and opportunities 2 Thermal load and energy performance prediction 3 Ventilation performance prediction 4 People in building performance simulation 5 Indoor thermal quality performance prediction 6 Weather and climate in building performance simulation 7 Daylight performance predictions 8 Moisture modeling and durability assessment of building envelopes:	
Precent advances 9 Computational modeling in architectural acoustics 10 The role of simulation in performance-based building 11 BIM and BPS: a case study of integration cost metrics and design options 12 Building simulation for policy support 13 Building simulation for practical operational optimization 14 Modeling and simulation in building automation systems 15 HVAC systems performance prediction 16 Micro-cogeneration system performance prediction 17 Modeling in building-to-grid integration 18 Modeling HVAC and renewable energy plant and control 19 A view on future building system modeling and simulation	Expanded Second Edition Building Performance Simulation for Design and Operation Builded by Jan L.M. Hensen and Roberto Lamberts
20 Integrated resource flow modelling of the urban built environment 21 Urban building energy modeling 22 Urban physics simulation for climate change adaptation of buildings and urban areas	

Simulation Applications and Climatic Data Requirements

Simulation Application	Type of weather data required
Energy design and compliance analysis of fully-conditioned buildings	Typical (full year) hourly data
Performance of un- or semi- conditioned buildings	Typical data not adequate -require application specific data (e.g., warm summer, multi-year data)
Equipment sizing	Design-day or short period calculations using near-extreme conditions
Model calibration, building trouble shooting, control optimization, and actual savings estimation	Weather data observed during the study period at or near the building site
Engineering studies (e.g., hours when economizer is feasible)	Simple weather information (e.g., bin temperature data)
Natural ventilation design	Local wind conditions highly variable - airport data often unreliable for other sites. Locally measured wind data.
Daylighting studies	Hourly Illuminance data usually sufficient for sensor-control lighting systems but sub-hourly data often required for visual comfort or control dynamics.
Renewable energy systems	Solar-electric systems require short-term data and spectral variation of incident solar radiation. Wind turbine systems require sub-hourly wind velocity data. (Standard hourly data may produce unrellable results for systems with non-linear characteristics.)

Average Decadal Changes Last '30 Years'

99.6% heating dry bulb temperature	+ 0.76 °C	+ 1.37 °F
0.4% cooling dry bulb temperature	+ 0.38 °C	+ 0.68 °F
0.4% dehum. dew point temperature	+ 0.28 °C	+ 0.50 °F
Dry bulb temperature range	~ 0 °C	~ 0 °F
Average temperature	+ 0.41 °C	+ 0.73 °F
Heating degree-days base 18.3°C / 65°F	- 118 °C-day	- 212 °F-day
Cooling degree-days base 10°C / 50°F	+ 68 °C-day	+ 122 °F-day

2017 Fundamentals Design Conditions

						CLE	VELAND	HOPK	NS INTI	., OH, U	SA				WMO#:	725240	
	Lat:	41.405N	Long:	81.853W	Elev:	770	StdP:	14.29		Time Zone:	-5.00 (NA	AE)	Period	90-14	WBAN:	14820	
	Annual He	ating and H	lumidificat	ion Design (Conditions												
	Coldest	Heatin	g DB		Hum	idification DF	/MCDB and	HR		0	Coldest mon	th WS/MCD	B	MCWS	PCWD		
	Month	99.6%	99%	DP	99.6%	MCDB	DP	99% HR	MCDB	WS U.	4% MCDB	WS	MCDB	MCWS	PCWD	ł	
	(a)	(b)	(0)	(d)	(e)	(f)	(g)	(h)	(1)	())	(k)	(1)	(m)	(n)	(0)	1	
(1)	1	4.6	10.0	-3.4	4.7	6.6	1.4	6.1	11.8	28.5	31.2	26.1	29.0	10.6	220		(1)
	Annual Co	oling, Dehu	midificatio	on, and Enth	alpy Design	n Conditions											
		Hottest			Cooling	B/MCWB			r		Evaporation	WB/MCDE	3		MCWS	PCWD	1
	Hottest	Month	0	.4%	1	%	29	%	0.	4%	1	%	2	%	to 0.4	% DB	
	wonun	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	1
	(a)	(b)	(c)	(d)	(e)	(1)	(g)	(h)	(1)	(])	(k)	(1)	(m)	(n)	(0)	(p)	
(2)	7	16.9	89.4	73.6	86.8	72.2	84.2	70.9	76.1	85.3	74.6	83.1	73.1	81.1	11.1	230	(2)
				Dehumidifi	cation DP/M	CDB and HR						Enthalp	y/MCDB			Extromo	1
		0.4%			1%			2%		0.4	4%	1	%	2	%	Max WB	
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	mantino	J
020	(a)	(0)	(0)	(d)	(e)	(1)	(g) 70.2	(1)	(1)	())	(K)	(1)	(m)	(n) 27.4	(0)	(p)	178222
(3)	73.1	120.7	81.2	/1.8	120.7	79.5	70.5	114.9	78.1	39.9	85.5	38.4	83.1	37.1	81.5	84.0	(3)
	Extreme A	Innual Desig	gn Conditi	ons													
	Evt	omo Annual	WS		E	xtreme Annu	al Temperati	ure		n-Y	'ear Return	Period Value	es of Extrer	ne Tempera	ture		1
	LAU	erne Arinuar	W3		Me	ean	Standard	Deviation	n=5	years	n=10	years	n=20	years	n=50	years	1
	1%	2.5%	5%		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max]
333	(n)	(0)	(p)		(b)	(0)	(d)	(e)	(1)	(g)	(h)	(1)	())	(K)	(1)	(m)	2020
(4)	24.0	21.0	18.9	DB	-1.1	93.4	0.9	2.9	-0.0	95.5	-10.1	91.2	-14.0	98.8	-19.0	100.9	(4)

32

2017 Fundamentals Design Conditions

Monthly Climatic De	esign Condit	ions		2										
		Annual	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	-	(d)	(e)	(1)	(g)	(h)	(1)	(j)	(K)	(1)	(m)	(n)	(0)	(P)
	DBAvg	51.3	28.2	30.1	38.0	49.6	59.8	69.2	73.0	71.6	64.5	53.7	43.0	33.0
	DBStd	18.17	11.41	10.29	11.21	9.85	8.63	7.08	5.50	5.24	7.09	8.18	9.26	9.69
Temperatures,	HDD50	2626	681	561	406	127	12	0	0	0	1	53	251	534
Degree-Days	HDD65	5801	1141	977	840	473	211	40	4	7	92	362	661	993
and	CDD50	3085	4	4	34	115	317	577	714	670	437	167	40	6
Degree-Hours	CDD65	786	0	0	3	10	51	167	253	212	78	12	0	0
	CDH74	6183	0	0	13	103	462	1354	2093	1544	545	68	1	0
	CDH80	1779	0	0	1	16	114	414	668	429	132	5	0	0
Wind	WSAvg	9.5	11.3	10.7	10.6	10.3	9.1	8.3	8.0	7.4	8.2	9.3	10.5	10.8
	PrecAvg	36.90	2.20	2.20	2.90	3.20	3.60	3.50	3.50	3.40	3.50	2.60	3.20	3.00
Dessinitation	PrecMax	53.80	4.40	4.70	5.20	6.60	9.10	9.10	9.10	9.00	7.30	5.60	8.80	8.60
Precipitation	PrecMin	18.80	0.40	0.50	0.90	1.20	1.00	0.60	0.70	0.50	0.70	0.70	0.80	1.10
	PrecStd	6.40	1.00	1.00	1.00	1.20	1.70	1.80	1.50	1.80	1.50	1.10	1.70	1.20
	0.4%	DB	61.7	62.9	75.2	82.5	86.9	90.9	93.3	91.3	89.0	80.2	70.0	62.0
Monthly Design	0.470	MCWB	56.1	54.1	61.4	64.4	70.4	73.1	76.8	75.4	71.9	66.6	60.1	56.9
Dry Bulb	20%	DB	55.8	55.2	68.0	77.0	83.4	87.9	89.7	87.8	83.7	75.3	65.1	56.5
and	2%	MCWB	52.2	49.3	57.0	61.9	68.4	72.6	74.4	73.3	70.0	63.3	57.1	52.2
Mean Coincident	50/	DB	50.1	49.4	62.5	72.0	79.6	85.0	86.6	84.7	80.0	71.2	61.4	51.3
Wet Bulb	5%	MCWB	45.8	43.6	54.1	59.0	66.6	71.0	72.6	71.9	68.4	61.7	54.9	47.6
Temperatures	1001	DB	43.6	44.4	56.3	66.9	75.2	81.7	83.7	81.9	76.5	67.2	57.6	46.5
	10%	MCWB	39.8	39.9	49.7	56.5	64.2	69.6	71.3	70.7	66.7	59.1	51.5	42.7
	0.49/	WB	56.6	55.8	62.6	67.9	73.8	76.4	78.8	78.0	75.0	69.4	62.6	57.5
Manthhu Daoinn	0.4%	MCDB	60.5	61.2	73.0	77.2	82.9	86.4	89.5	87.6	83.5	77.5	67.4	60.8
Wet Bulb		WB	52.7	50.3	58.7	64.0	70.9	74.5	76.7	75.4	72.4	65.8	58.7	53.3
and	2%	MCDB	55.9	54.7	66.2	74.1	80.0	84.3	86.8	83.4	79.6	72.6	63.7	56.1
Mean Coincident			10.0	44.7	510		00.5	20.0	24.7	74.0	70.5	00.4	55.5	17.0

Climatic Data in Building Performance Simulation

- Climatic data needed for simulating representative performance from a single year analysis.
- TMY (Typical Meteorological Year) approach is most widely used- a composite of months (not all from same year), each representative for the period of record. ISO Standard 15927-4 uses this method.
- Months selected using statistical of indices (daily min, mean, max) dry-bulb temperature, dew-point temperature, wind speed, and total global and direct solar radiation. Each method varies the weightings of the indices based on their importance.

Typical Meteorological Year Hourly Data Sets

• Best for:

- Comparison of alternatives during design
- Compliance with building standards/codes and green building rating system points

• Limitations:

- No explicit effort to represent extreme conditions
- Files not intended to represent design conditions (can be mild)

	Typical Moto	orol	ogical Voar
	Weather Data	Set	s Available
Weather Da	ta Sets	Number of	Commentin Comment
Acronym	Name	Locations	Geographic Coverage
CTZ2	California Climate Zones 2	16	California
CWEC	Canadian Weather for Energy Calculations	80	Canada
CIBSE	Chartered Institute of Building Services Engineers Test Reference Years and Design Summer Years	14	United Kingdom
CSWD	Chinese Standard Weather Data	270	China
СТҮЖ	Chinese Typical Year Weather	57	China
IGDG	Italian Climate data collection 'Gianni de Giorgio'	66	Italy
IMGW	Instytutu Meteorologii I Gospodarki Wodnej Weather Data Set	61	Poland
IMS	Israel Meteorological Service Weather Data for Israel	4	Israel
ISHRAE	Indian Society of Heating, Refrigerating and Air- Conditioning Engineers	58	India
ITMY	Iranian Typical Meteorological Year	6	Iran
IWEC2	International Weather for Energy Calculations v2	3012	Worldwide (except USA and Canada)
NIWA	National Institute of Water & Atmospheric Research	16	New Zealand
RMY	Representative Meteorological Year	80	Australia
SWEC	Spanish Weather for Energy Calculations	52	Spain
SWERA	Solar and Wind Energy Resource Assessment	156	Belize, Brazil, China, Cuba, El Salvador, Ethiopia, Chana, Guatemala, Honduras, Kenya, Maldives, Nicaragua, and Sri Lanka
TMY3	Typical Meteorological Year 3	1020	USA, Guam, Puerto Rico, US Virgin Islands
TMVY	Typical Meteorological Year	13.000+	Worldwide (data up through 2018)

IPCC Climate Change Scenarios

- Four major storylines developed to represent different demographic, social, economic, technological, and environmental developments.
- Updated for each Assessment Report, latest AR5 was released in 2013
- Four emissions scenarios, called Representative Concentration Pathways (RCPs) derived from the storylines – RCP2.6, RCP4.5, RCP 6.0 RCP8.5– represent the range of potential climate impact

https://www.ipcc.ch/ https://www.ipcc.ch/report

Creating Future Climatic Data

Methods

- Dynamic downscaling
 - Physics-based model used to downscale global climate model results
- Analogue scenarios
 - Find existing locations with comparable data to the predicted climate change scenario results
- Time series adjustment (morphing)
 - Shift and stretch the existing data to match the predicted monthly change
- Statistical models
 - Stochastic model trained on observed data adjusts data based on altered frequency distributions of weather variables

44

Summary

- Climatic data is critical for building design (equipment and systems sizing)
- For building performance simulation, typical (TMY), actual, and future weather support building evaluation
 - Some question of whether single TMY is enough (research on XMYs underway)
 - Rich resources of data now available both ground observing stations and satellite data.
- Climate change scenarios can be represented today by modifying existing hourly weather files
 - Buildings in higher latitude climates (north and south) will likely see decreases (heating decreases more than cooling increases)
 - Buildings in tropical and semi-tropical locations will see increases but lower than changes in higher latitudes – primarily due to increased cooling
 - Energy-efficient buildings mitigate most impacts of both climate change and heat islands.
 - Result significantly more hours of cooling equipment operation.

78

Ok, So What Can/Should I Do?

- Design the best building you can beyond code towards zero-energy, WELL, 2030, etc
 - Remember that most building components/equipment have a 10-30 year life
 - Plan for future upgrading
- Concerned about potential impacts?
 - Look at next warmest climate (Cleveland→ Louisville, Boise→ Salt Lake City, Boston → NYC, San Francisco→ LA)
 - How different are the design conditions?
 - Will my safety factors/oversizing be able to cover (in real life, oversizing means we rarely see full loading)
- If doing building simulation, use a future climate file or substitute a climate file from next warmer climate

No Single Metric Tells the Building Performance Story

- Energy
- Demand
- Cost
- Water
- IEQ
- Carbon
- Business (student, occupied room, sales, beer barrels)

80

